
101

OS 制作

金田 航輝

１．研究概要

 プログラムを制作する上でブラックボック

ス化しがちな OS の基本的な動作を学ぶために

簡易的な OS の制作を行った。

２．研究の具体的内容

（１）環境構築

今回の制作では Linux 上で開発する必要が

あったので、Windows11 上で wsl を使用し、

ubuntu を実行することで、OS を制作した。

 さらに Linux 上で QEMU というエミュレータ

を使用し、制作した OS を実行した。

また統合開発環境として、Visual Studio

Code を使用し、バージョン管理では git を使

用した。

・wsl

Windows 上で Linux 環境を動作させる機能

・ubuntu

Linux を基にした OS の１種

（２）Hello World!

 まず、他の OS の機能を使わずに画面にメッ

セージを表示するために、バイナリエディタ

でプログラムを制作した。(図１)

図１ バイナリの例

(３)EDK II

 EDK II とは intel が UEFI とその周辺プロ

グラムを実装し、それがのちにオープンソー

スとして公開されたものである。今回は EDK

II を使用してメモリマップの表示を行った。

(図２)

図２ 画面に文字を表示する様子

(４)ブートローダー

 EDK II では UEFI の開発ができるが、UEFI

アプリには UEFI で決められた規格通りにしか

制作できない。そのためカーネルというファ

イルを UEFI と分けて作ることでその制約を気

にしないで制作することができる。

(５)描画

 OS を作るうえでは文字を表示するためには、

まず画面上のどのピクセルであってもどのよ

うな色であっても描画できる必要がある。(図

３)

図３ 画面に表示するイメージ

102

 次にその機能を使用することによって文字

の表示を行う。(図４)文字を描画するため

に、色を描画する場所を「１」、色を描画し

ない場所を「0」、とした２次元配列を使用し

て文字の描画を実現する。(図５)

図４ 画面上に文字 AA を表示するイメージ

図５ 文字 A の配列

 またすべての英数字に対してフォントを手

入力するには時間があまりにもかかるので、

東雲フォントというフォントを加工し、この

OS でも使えるようにした。また printk とい

う関数を作りログ用の文字を表示できるよう

にした。(図６)

図６ printk 関数を使用した出力例

(６)マウス入力

 マウスの表示もまずは文字の表示と同じよ

うに専用の２次元配列を作りそれをピクセル

を描画する関数で表示する。(図７)

図７ マウスカーソルの配列の様子

103

 マウスカーソルを動作させるプログラムは、

マウスカーソルを初期の位置に描画する。

 MouseCursor クラスのコンストラクタで行

う 。 (図 ８) マ ウ ス カ ー ソ ル の 移 動 で は

MouseCursorクラス内の MoveRelative関数で

行う。(図９)では実際にマウスカーソルを表

示している

図８ MouseCursor クラスの内部

図９ マウスカーソルの表示

(７)割り込み

 現在のマウスの動作は、ポーリング方式を

採用している。しかしポーリング方式では、

マウスの動作が固まることがある。しかし割

り込みを行うことで、イベントが発生した時

点で動作をするようになるので、より効率が

良くなる。

(８)メモリ管理

 OS が動作するに従い、メモリが必要になっ

たり、不要になったりすることがある。しか

し現在はメモリの確保、解放の機能がない。

 そのため今回はページング処理を行いメモ

リの管理を行う。(図 10)

図 10 ページング処理のイメージ

(９)重ね合わせ処理

 現在ではレイヤーの処理ができていない。

 そのためマウスカーソルを文字の上などに

動かすと文字が背景色で上書きされてしまう。

その動作の回避のために重ね合わせ処理を制

作する。(図 11)

図 11 レイヤーのイメージ

mousecursor class

class MouseCursor {

 public:

 MouseCursor(PixelWriter* writer, PixelColor

erase_color,

 Vector2D<int> initial_position);

 void MoveRelative(Vector2D<int> displacement);

 private:

 PixelWriter* pixel_writer_ = nullptr;

 PixelColor erase_color_;

 Vector2D<int> position_;

};

104

(10)ウィンドウ

 ウィンドウは前回制作した重ね合わせ処理

を応用することで作ることができる。イメー

ジとしては、ウィンドウ用のレイヤーをマウ

スカーソルとデスクトップのレイヤーの間に

表示する。(図 12)

図 12 ウィンドウを表示している様子

(11)キー入力

 キー押下時にイベントを処理するハンドラ

を作成し、押されたことを検出する。(図 13)

図 13 キー入力用ハンドラ

 またより OS に近づけるために、テキストボ

ックスウィンドウを表示し、キーボードを押

下すると対応した値が入力されるようにし、

またカーソルが出てくるようにする。(図 14)

図 14 文字入力の様子

(12)コマンド

 ターミナル上でコマンドを実行するために、

エンターキーが押されると ExecuteLine 関数

が実行される。次の NULL 文字までをコマンド

と認識し、入力されたコマンドを実行する。

(図 15)

図 15 ExecuteLine 関数

initi lize keyboard

void Initial izeKeyboard(std::deque<Message>&

msg_queue) {

 usb::HIDKeyboardDriver::default_observer =

 [&msg_queue](uint8_t keycode) {

 Message msg{Message::kKeyPush};

 msg.arg.keyboard.modifier = modifier;

 msg.arg.keyboard.keycode = keycode;

 msg.arg.keyboard.ascii = ascii;

 msg_queue.push_back(msg);

 };

}

void Terminal::ExecuteLine() {

 char* command = &linebuf_[0];

 char* first_arg = strchr(&linebuf_[0], '

');

 if (first_arg) {

 *first_arg = 0;

 ++first_arg;

 }

 if (strcmp(command, "echo") == 0) {

 if (first_arg) {

 Print(first_arg);

 }

 Print("\n");

 } else if (command[0] != 0) {

 Print("no such command: ");

 Print(command);

 Print("\n");

 }

}

105

(13)ファイルシステム

 まずファイルとは一般的に任意のバイト列

に名前を名付けたものだ。そのファイルの操

作/アクセス/検索のためのシステムをファイ

ルシステムと呼ぶ。今回は試しやすさや、規

格が公開されていて実装しやすいので FAT を

扱う。

また確認用のコマンド「ls」を実装する。そ

のためのファイル名を取得するプログラムを

(図 16)に示す。

図 16 ReadName 関数

(14)アプリケーション

 今回は、ファイルシステムを使用し、OS 本

体とは別のファイルを作成し、OS 側からアプ

リケーションを読み取り実行できるようにす

る。そのため ExecuteLine 関数とは別に

ExecuteFile 関数を追加する。(図 17)

図 17 ExecuteFile 関数

VoidTerminal::ExecuteFile(const fat::DirectoryEntry&

file_entry) {

 auto cluster = file_entry.FirstCluster();

 auto remain_bytes = file_entry.file_size;

 std::vector<uint8_t> file_buf(remain_bytes);

 auto p = &file_buf[0];

 while (cluster != 0 && cluster !=

fat::kEndOfClusterchain) {

 const auto copy_bytes = fat::bytes_per_cluster <

remain_bytes ?

 fat::bytes_per_cluster : remain_bytes;

 memcpy(p,

fat::GetSectorByCluster<uint8_t>(cluster),

copy_bytes);

 remain_bytes -= copy_bytes;

 p += copy_bytes;

 cluster = fat::NextCluster(cluster);

 }

 using Func = void ();

 auto f = reinterpret_cast<Func*>(&file_buf[0]);

 f();

}

void ReadName(const DirectoryEntry&

entry, char* base, char* ext) {

 memcpy(base, &entry.name[0], 8);

 base[8] = 0;

 for (int i = 7; i >= 0 && base[i] ==

0x20; --i) {

 base[i] = 0;

 }

 memcpy(ext, &entry.name[8], 3);

 ext[3] = 0;

 for (int i = 2; i >= 0 && ext[i] == 0x20;

--i) {

 ext[i] = 0;

 }

}

106

３．研究のまとめ

 今回の OS 制作では、OS を作るということを

通して OS の基本的な動作や、どのようなプロ

グラムで作られているかを理解することがで

きた。

 また C 言語などのプログラミングの実習な

どでは、あまり使わないと思っていたポイン

タが、ほぼすべての関数に１つ以上使われて

いたことに驚いた。

 またクラスを使用して、オブジェクト指向

を意識して、プログラムすることの大切さが

再び理解することができた。

 今後はプログラムを制作するときは、伝わ

りやすさを考え、関数化、オブジェクト指向

の意識をして伝わりやすいプログラムを書け

るようにしたい。

参考文献

内田公太 ゼロからの OS 自作入門 743p.

株式会社マイナビ出版

mikanos (source code)

https://github.com/uchan-nos/mikanos

ページング方式とは-IT を分かりやすく解説

https://medium-company.com/

https://github.com/uchan-nos/mikanos
https://medium-company.com/

